Synthesis and Properties of 1,4-Dimethoxynaphtho[2,3]-annelated Dehydroannulenes Tohru Nishinaga, Hideaki Nakayama, Nobutake Nodera, Koichi Komatsu* Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan Received 18 June 1998; revised 10 July 1998; accepted 13 July 1998 Abstract: Synthesis and characterization of dehydroannulenes which consist of 1,4-dimethoxynaphthalene units connected at the 2,3-positions by acetylene and butadiyne linkages are described. The 1H NMR spectra indicated neither significant diatropicity nor paratropicity in all of these annulenes. The electronic absorption maximum of the planar annulenes was shifted bathochromically compared with the absorption of 1,4-dimethoxy-2,3-bis[(trimethylsilyl)ethynyl)]naphthalene as a reference, whereas not much bathochromic shift was observed for annulenes with non-planar π -systems. © 1998 Elsevier Science Ltd. All rights reserved. Keywords: Annulenes; Enynes; Naphthalenes; X-Ray crystal structures The chemistry of dehydroannulenes is currently attracting renewed interest not only as basic models of the cyclic π -conjugated system but from the aspects of dynamic behaviors or molecular functionality. For example, some dehydroannulenes give rise to ordered carbon layers of tube- and onion-type structures upon explosive thermolysis [1], and other derivatives are reported to show non-linear optical properties [2]. These dehydroannulenes mostly consist of benzene rings and alkyne linkages. In comparison, there are rather few studies which are concerned with annulenes fused with naphthalene or other condensed aromatics [3]. Recently, we demonstrated that the annelation with rigid bicyclic frameworks is effective to rigidly hold the π -system and to decrease the oxidation potentials of the π -system [4]. Being interested in the properties of the naphtho-annelated dehydroannulenes in comparison with those having bicyclic frameworks and also intrigued by the possibility of transforming them into derivatives having highly redox-active naphthoquinone units, we were prompted to synthesize a series of the titled dehydroannulenes. For the synthesis of dehydroannulene with the naphthalene units connected by acetylene linkage, the 2-propynyl-3-bromonaphthalene 2 was subjected to one-pot *in-situ* deprotection and Pd-catalyzed cross-coupling [5] to give 3¹ as the only cyclized product (Scheme 1a). On the other hand, the oxidative coupling of diethynyl derivative 5 [6] under standard Eglinton conditions [7] afforded the cyclic dimer to pentamer 6–9. (Scheme 1b). This is in contrast to the coupling of 1,2-diethynylbenzene which gave only the cyclic dimer [7,8]. Dimer 6 was hardly soluble in common organic solvents (e.g., 0.07 mg / 1 ml of CHCl₃) and precipitated from the reaction mixture while the other products were separated by preparative gel permeation chromatography. Scheme 1 (a) $$OMe$$ OMe OM A single crystal was obtained only for trimer 3. The X-ray crystallography demonstrated that 3^2 has a planar structure (Fig. 1(a)). The PM3 calculations showed that the annulene ring of 3 as well as 6 and 7 is planar while that of 8 and 9 has bent structures (Fig. 1(b)). Another feature in the X-ray structure of 3 is the considerable bond alternation in the naphthalene ring. Thus, among the canonical structures A and B, the contribution of structure **B** should be much smaller. Particularly, the bond length of C2-C3 (1.439(4) Å) was found to be longer than the observed length of unsubstituted naphthalene (1.412 Å) [9]. This is more pronounced than the elongation of the corresponding bond in trisdehydrotribenzo[12]annulene (1.408(1) Å) [10] in comparison with benzene (1.399 Å) [9]. This elongation in the C2-C3 bond is attributed to the decrease in the π -bond order due to the conjugation with the acetylene moiety because a gradual elongation was observed for the corresponding bond in the calculated structure (PM3) of unsubstituted- (1.415 Å), 2-ethynyl-(1.422 Å), and 2.3-diethynylnaphthalenes (1.430 Å). For reference, the calculated C2-C3 bond lengths for 3 (1.430 Å) and 7 (1.431 Å) were almost identical to that of the corresponding bond in 2,3-diethynylnaphthalene. ^{1.} The other data for 3 and 6–9 not shown in Table 1 are as follows. 3; brown crystals, mp 270–271 °C(dec.), IR (KBr) 2197 cm⁻¹ (C=C), EI MS m/z 630(M⁺). 6; yellow solid, mp >250 °C(dec.), IR (KBr) 2183, 2118 cm⁻¹ (C=C), EI MS m/z 468(M⁺). 7; yellow solid, mp >250 °C(dec.), IR (KBr) 2200, 2132 cm⁻¹ (C=C), FAB MS m/z 702(M⁺). 8; brown solid, mp >250 °C(dec.), IR (KBr) 2200, 2129 cm⁻¹ (C=C), FAB MS m/z 936(M⁺). 9; brown solid, mp >250 °C(dec.), IR (KBr) 2197 cm⁻¹ (C=C), FAB MS m/z 1171(M⁺+1). 2. Crystal data for 3: space group P41212; a = 10.971(2) Å, c = 26.099(2) Å; V = 3141(1) Å³; Z = 4; $D_{calc} = 1.334$ g/cm³; total of 1464 reflections within $2\theta = 120.1^{\circ}$ and I>3.00 σ (I); the final R factor = 3.7% (R_w =5.2%). | Compd. [n]annulene | ¹ H NMR / ppm | | | UV-vis | | Fluorescence | | |--------------------|--------------------------|------|------|--|------------------------|----------------------|----------| | | С5-Н | С6-Н | MeO | λ_{max} / nm (log ϵ) | λ _{edge} / nm | Emission maximum /nm | Φ^b | | 4 | 8.09 | 7.51 | 4.08 | 275 (5.1) | 380 | 379^{a} | 0.32 | | 3 [12] | 8.16 | 7.57 | 4,32 | 330 (5.1) | 430 | 427 | 0.82 | | 6 [12] | 8.05 | 7.52 | 4.19 | 342 (5.0) | 460 | 460 | 0.44 | | 7 [18] | 8.16 | 7.60 | 4.22 | 347 (5.1) | 440 | 431 | 0.52 | | 8 [24] | 8.11 | 7.56 | 4.16 | 287 (5.3) | 415 | 427 | 0.14 | | 9 [30] | 7.95 | 7.44 | 4.11 | 282 (5.2) | 445 | | - | Table 1. ¹H NMR, UV-vis, and Fluorescence Spectra in CDCl₃ or CHCl₃ of Monomer 4 and Dehydroannulenes 3, 6-9. ^a In cyclohexane. ^b The quantum yields, estimated by the use of 9,10-diphenylanthracene ($\Phi = 0.90$). Figure 1. (a) X-ray structure of 3 with selected bond lengths (Å) and angles (°). (b) PM3 optimized structures for 8 and 9. As shown in Table 1, the 1H NMR spectra for these dehydroannulenes were quite similar regardless of their planar or bent structures. Each naphthalene moiety in the bent annulene 9 is not differentiated, suggesting that the conformational change is sufficiently rapid within the NMR time scale. The signals for the methoxy group underwent downfield shift relative to 4 but did not correlate with the number of π electrons of the annulene ring. These results indicate that there is no appreciable effect of ring current on the central dehydroannulene ring in 3 and 6–9. This atropicity can be attributed to the position of annelation within the naphthalene ring. Previous study has demonstrated that annelation at the 1,2-positions of naphthalene in dehydro[14]annulene is much more effective for the occurrence of diatropicity than that at the 2,3-positions [11]. On the other hand, the UV-vis absorption showed a difference between the annulenes having the planar and bent structures; the maximum absorption of planar annulenes 3, 6, and 7 was shifted bathochromically by 55-72 nm compared with monomer 4, while the shift for the bent annulenes 8, 9 was quite small. This is qualitatively in accord with the calculated result (PM3) that the HOMO-LUMO gap for planar annulenes 3 (ΔE_{H-L} 7.43 eV), 6 (7.41 eV), and 7 (7.44 eV) is smaller than that for bent annulenes 8 (7.62 eV), and 9 (7.48 eV). All these endiynes, except for highly bent annulene 9, exhibited a blue-purple emission in solution. In the fluorescence spectra, the emission maximum of the strained annulene 6 was observed at the most long-wavelength region, and the quantum yield of annulene 3 linked by acetylene was found to be larger than that in other annulenes 6-8 linked by butadiyne. The relatively higher HOMO and lower LUMO in annulenes 3, 6, and 7 should be reflected in the redox behaviors. Although the measurement of 6 was hampered by its extremely low solubility, the cyclic voltammetry in benzonitrile indicated the relevant redox potentials for 3 ($E_{pa} = +0.91$ V (irreversible) vs Fc/Fc+, $E_{1/2} = -2.23$ V (reversible)) and 7 ($E_{pa} = +1.05$ V (irreversible), $E_{1/2} = -2.11$ V (reversible)) while no redox wave was observable in the region from +1.3 to -2.4 V for 8 and 9. Upon comparison of the redox potentials of 3 and 7, there was no such significant difference as observed for the bicyclo[2.2.2]octene-annelated derivatives, that is, the lower oxidation potential for the antiaromatic tridehydro[12]annulene system than for the aromatic hexadehydro[18]annulene system by 0.6 V [4]. In summary, it is concluded that the dehydroannulenes annelated at the 2,3-positions of naphthalene rings should be regarded more as the naphthalenes connected by acetylenic linkages rather than as annulenes. Studies are now under way to transform these π -systems into the naphthoquinone and hydroquinone derivatives and construct the supramolecular network via hydrogen bonds. Acknowledgement The present work is supported by Grant-in-Aid from the Ministry of Education, Science, Sports and Culture, Japan. Computation time was provided by the Super Computer Laboratory, Institute for Chemical Research, Kyoto University. ## References - [1] Boese R, Matzger AJ, Vollhardt KPC. J. Am. Chem. Soc. 1997;119:2052-2053. - [2] Pak JJ, Weakley TJR, Haley MM. Organometallics 1997;21:4505-4507 and references cited therein. - [3] For a review of annulene chemistry, see: Balaban AT, Banciu M, Ciorba V. Annulenes, Benzo-, Hetero-, Homo- Derivatives and their Valence Isomers, Vol. 1-3. Boca Raton: CRC Press, 1987. - [4] Nishinaga T, Kawamura T, Komatsu K. J. Org. Chem. 1997;62:5354-5362. - [5] Huynh C, Linstrumelle G. Tetrahedron 1988;44:6337-6344. - [6] Semmelhack MF, Neu T, Foubelo F. J. Org. Chem. 1994;59:5038-5047. - [7] Behr OM, Eglinton G, Galbraith AR, Raphael RA. J. Chem. Soc. 1960:3614-3625. - [8] Zhou Q, Carroll PJ, Swager TM. J. Org. Chem. 1994;59:1294-1301. - [9] Kao J, Allinger NL. J. Am. Chem. Soc. 1977;99:975-986 and references cited therein. - [10] Irngartinger H, Leiscrowitz L, Schmidt GMJ. Chem. Ber. 1970;103:1119-1131. - [11] Walsgrove TC, Sondheimer F, Tetrahedron Lett. 1978:2719-2722.